

Universal USB-Interface-Chip CH341A

A solution for your USB project!

USB-RS232-Interface
USB-Printer-Interface
EPP/MEM Read/Write

Digital I/O
I²C-Interface

The CH341 makes it possible to interface different kind of user applications to the PC over USB, without
any need of µC controller programming. The Chip can be used as I²C interface to i²C enabled peripheral
IC´s. It also offers an 8 bit bi-directional data bus with EPP/MEM protocol, which could be used to interface
HD44789 compatible text LCD displays for example. The Chip can also work as USB-RS232 interface,
often needed to adapt AVR-applications to USB, where USB powering option is another advantage.

Programming is made easy using an API-DLL, suitable for almost any programming language (Delphi, C,
VB ...). RS232 transfers can be made even easier over a virtual (USB-) COM port driver. Last but not least
the CH341A is supported by our software ProfiLab Expert 4.0.

For a fast and successful approach we offer the following products around the CH341A:

Evaluation-Board, DIP28 module
(DIP28 module included)

Interface PCB (DIP28-Modul included) Interface Assembly Kit

(DIP28-Modul, PCB and components included)

(C) 2008 ABACOM-Ingenieurgesellschaft

Mode configuration

The chip is configurable for three basic modes. Depending on your circuit design the pins overtake
different functional behaviour.

- UART
- PRINT
- EPP / MEM / I²C / Digital I/O

The mode configuration can be made using the pins SDA and SCL, or it can be stored in an optional serial
EEPROM. Depending on the mode configuration the chip has a different USB-PID and Windows loads a
certain device driver. Using an EEPROM an individual manufacturer ID and product ID can be used.

Suitable EEPROMS are 24C01A, 24C02, 24C04, 24C16, etc. During initialization the chip tries to find an
EEPROM configuration first. If no such configuration is found, SDA and SCL lines determine the mode
(see table below).

The EPP/MEM mode can be forced pulling the ACT# pin low to ground with a 2K resistor. The advantage
is that I²C pins can still be used in that case.

SCL and SDA conditions Mode USB-PID
SDA and SCL open UART; RS232 5523 hex
SDA low, SCL open EPP/MEM/I²C 5512 hex
SDA with SCL shortened USB-Printer 5584 hex

USB, power supply, clock, reset

Pin Name Function Remarks
28 VCC Supply 0,1 µF to ground
12 GND Ground
9 V3 3,3 V supply: connect to VCC

5 V supply: 0,01 µF to GND
13 XI Osc. IN Osc. 12 MHz
14 XO Qsc OUT Osc 12 MHz
10 UD+ USB D+ USB line D+
11 UD- USB D- USB line D-
1 ACT# Output LOW after USB init
2 RST1 Input External RESET input
24 SCL I²C SCL bus line
23 SDA I²C SDA bus line

Above circuit shows how to operate the CH341A. USB connection is P3. USB cables usually use the
following colour encoding:

VCC Red
GND Black
D+ Green
D- White

The chip is clocked with a 12 MHz crystal. The EEPROM is optional. The circuit is USB powered. L1
indicates ”Chip ready”. C26 generates a power-on-reset.

UART mode

Pin Name Function Remarks
5 TXD Output Transmit data
6 RXD Input Receive data
27 TEN# Input LOW = transmit enabled
25 RDY# Output LOW = ready
26 TNOW Output HIGH during transmission
4 ROV# Output LOW = Input buffer overflow
15 CTS# Input Hardware handshake
16 DSR# Input Hardware handshake
17 RI# Input Hardware handshake
18 DCD# Input Hardware handshake
20 DTR# Output Hardware handshake
21 RTS# Output Hardware handshake
19 OUT# Output Reserved
7 INT# Input Interrupt request (rising edge)
8 IN3 Input Reserved
3 IN7 Input Reserved
22 NC. Reserved Reserved

ACT#, SCL and SDA are left open to configure Chip for UART mode.

Windows installs a COM port for this configuration.

RS232 signals are available with TTL level and can be connected directly to micro-controllers (AVR, PIC,).
MAX232 level converters must be used to connect the chip to other RS232 devices.

RS485 converters are easy to connect as well.

Supported COM parameters:

Data bits: 5...9
Stop bits: 1, 2
Parity: none, even, odd
Baud rates: 50, 75, 100, 110, 134.5, 150, 300, 600, 900, 1200, 1800, 2400, 3600, 4800, 9600, 14400,

19200, 28800, 33600, 38400, 56000, 57600, 76800, 115200, 128000, 153600, 230400,
460800, 921600, 1500000, 2000000.

PRINT mode

Pin Name Function Remarks
22...15 D7...D0 DATA Data lines
25 STB# Output Strobe
4 AFD# Output Auto feed
26 INI# Output Init
3 SIN# Input Select IN
5 ERR# Input Error
8 SLCT Input Select
6 PEMP Input Paper out
7 ACK# Input Acknowledge
27 BSY Input Busy

Shortening SCL and SDA configures chip for PRINT mode. The pins overtake functions of a standard
Centronics printer port. In this mode Windows installs a ”USB printer support” driver. This mode is unlikely
to be used for custom applications.

EPP / MEM / I²C / I/O

This mode can be configured in two different ways:

Pin 23 (SDA) connected to ground (=> I²C not possible)

or

Pin 1 (ACT#) connected to Ground over 2K resistor

This mode configuration will load a Windows driver that can be accessed from programming languages
using an API-DLL (CH341API.DLL). Examples and include-files are available for Delphi, VB und C.

Calling an API-function the CH341A will do the data exchange with the connected peripherals itself.
Depending on the called function and hardware protocol the chip will generate the necessary signal pattern
at its pins. SCL (Pin 24) and SDA (Pin 23) are assigned to I²C. Other pins have different functions for
EPP/MEM transfers. I/O pins can be programmed individually as well, to realize other hardware protocols
by software programming.

EPP

The CH341 reads (/WR=HIGH) and writes (/WR=HIGH) from/to an 8 bit data bus. A data register
(/DS=LOW) or address register (/AS=LOW) can be selected. The diagram below shows the signal
pattern:

Pin Name Function Remarks
22...15 D7...D0 bi-directional 8 bit data bus
25 WR# Output Read /Write
4 DS# Output /Data select
26 RST# Output /Reset
3 AS# Output /Address select
27 WAIT# Input /Wait
7 INT# Input Interrupt request (rising edge)
5 ERR# Input IN0
8 SLCT Input IN3
6 PEMP Input IN1

API functions:
Function CH341EppReadData(...) Read data register /WR=1; /DS=0;
Function CH341EppReadAddr(...) Read address register /WR=1; /AS=0;
Function CH341EppWriteData(...) Write data register /WR=0; /DS=0
Function CH341EppWriteAddr(...) Write data register /WR=0; /AS=0
Function CH341EppSetAddr(...) Write address register /WR=0; /AS=0 (1 Byte)

MEM

The CH341 reads (/RD=LOW) and writes (/WR=LOW) from/to an 8-bit data bus. Address line A0 allows
selecting between two registers (for example reading DAC A and DAC B of a LTC7528 Dual 8-Bit DA
converter or registers of HD44780 compatible LCD displays.

Pin Name Function Remark
22...15 D7...D0 bi-directional 8-bit data bus
25 WR# Output /Write
4 RD# Output /Read
26 RST# Output /Reset
3 A0 Output Address select
27 WAIT# Input /Wait
7 INT# Input Interrupt request (rising edge)
5 ERR# Input IN0
8 SLCT Input IN3
6 PEMP Input IN1

API functions:
Function CH341MemReadAddr0(...) Read; A0=LOW; /RD=0
Function CH341MemReadAddr1(...) Read; A0=HIGH /RD=0
Function CH341MemWriteAddr0(...) Write; A0=LOW; /WR=0
Function CH341MemWriteAddr1(...) Write; A0=HIGH; /WR=0

I²C (Master)

The circuit below shows I²C operation using a 24Cxx EEPROM. Additional I²C (TWI) enabled IC´s can be
connected to the bus lines SCL and SDA. The CH341A generates bus clock rates of
20KHz/100KHz/400KHz/750KHz and operates as bus master in any case. Slave operation is not
supported.

As chip mode configuration with SDA to ground would occupy I²C lines, the chip mode must be configured
with resistor R4 in this case. Pin RST# pulls down ACT# during reset, which configures chip mode. If LED
L2 is not used, ACT# can be pulled low to ground with a 2K resistor as well and R3 can be removed.

API functions
Function CH341StreamI2C(...) Read/Write I²C
Function CH341ReadI2C(...) reads from chips with internal memory or register address.
Function CH341WriteI2C(...) writes to chips with internal memory or register address.
Function CH341ReadEEPROM(...) reads I²C-EEPROM data
Function CH341WriteEEPROM(...) writes I²-EEPROM data

SPI-Master

SPI functions are not assured for all chip versions. The description is just made to be complete.

Pin Name Function Remark
22 DIN Input Data IN
21 DIN2 Input Data IN2
20 DOUT Output Data OUT
19 DOUT2 Output Data OUT2
18 DCK Output Data Clock
17 CS2 Output CS2
16 CS1 Output CS1
15 CS0 Output CS0
24 SCL Output SCL
23 SDA Output SDA
26 RST# Output Reset
7 INT# Input Interrupt request (rising edge)
5,8,6 Input Reserved

The chip operates as SPI master. Slave operation is not possible. API functions exchange data over a
buffer, that needs to be filled with send data before function is called. After API function returns, the buffer
contains the bytes read. This means that number of bytes read and bytes written is equal.

Standard-SPI (MODE 0)
AP function: CH341StreamSPI4
Standard SPI (Mode 0) with two uni-directional data lines, clock and chip select. (Atmel, etc.)
This is the most commonly used SPI mode. Data is read from input pin 22 (DIN; DATA IN ; MISO) and
written to output Pin 20 (DOUT; DATA OUT; MOSI). Pin 18 (DCK; DATA CLOCK; SCKL) offers the clock
signal. Outputs CSx (Chip Select; Slave Select) activate the selected chip. Serial transfer of data may start
with (MSB or LSB) first.

3-wire SPI
API function: CH341StreamSPI3
Data transfer is done with a single, bi-directional data line. A rising clock edge writes data, a falling clock
edge reads data. This kind of protocol can be found at MAXIM chip DS1626 for example.
SPI with dual data lines
API function: CH341StreamSPI5
This function uses two pairs of uni-directional data lines. A data byte is split into upper and lower half.
Upper nibble is transferred over DIN/DOUT, while lower nibble is transferred over DIN2/DOUT2. A
concrete example for this mode could not be found.
Other serial transfers similar to SPI
API function: CH341BitStreamSPI
This function can generate an individual serial signal pattern. A LTC1257 D/A converter for example uses
a 12 bit serial transfer with final LOAD signal. For such cases the function offers 6 serial output channels
and 2 serial input channels. These eight channels are assigned to the bits 0..7 of the in coming and out
going data bytes. Bit 6 and bit 7 contain read data from data inputs D6 and D7. Output D3 offers the clock
signal. Output pattern for D0...D2, D4 and D5 is generated from the bits 0...2, 4 and 5 of the data bytes
shipped to the API call. As the function does not set the data direction of the data lines, D0..D5 must be
programmed as output before, using the corresponding function CH341SetOutput().

Programming I/O individually

Each I/O pin of the CH341A is assigned to a certain bit in the parameters Enable, SetDirOut and
SetDataOut of the API functions listed below.

15 bi-directional pins (with programmable data direction; input or output):
Bit 0-7 D0-D7 pin 15-22
Bit 8 ERR# pin 5
Bit 9 PEMP pin 6
Bit 10 ACK pin 7
Bit 11 SLCT pin 8
Bit 12 - -
Bit 13 BUSY/WAIT# pin 27
Bit 14 AUTOFD#/DATAS# pin 4
Bit 15 SLCTIN#/ADDRS# pin 3

One pseudo-bi-directional pin (Combination of input and open-collector-output) :
Bit 23 SDA pin 23 (functions GetInput/GetStatus)
Bit 16 SDA pin 23 (function SetOutput)

Three uni-directional pins (output only):
Bit 16 RESET# pin 26
Bit 17 WRITE# pin 25
Bit 18 SCL pin pin 24

API functions

CH341SetOutput

- Sets data direction (input/output) of bi-directional pins,
- Sets output state HIGH/LOW

CH341Set_D5_D0

- Sets data direction of pins D0...D5
- Sets output state of pins D0...D5

CH341GetInput und CH341GetStatus

- Reads input states

Parameter Enable

- Prohibits or allows changes of data direction
- Bit set = changes allowed
- Bit clear = changes are ignored

Parameter SetDirOut:

- Sets data direction: Input/Output
- Bit set = Pin operates as output (Caution!)
- Bit clear = Pin operates as input

Parameter SetDataOut

- Switch outputs
- Bit set = switch output HIGH
- Bit clear = switch output LOW

Example: CH341SetOutput(0, $FF, $FF, $F0) sets data direction of D0...D7 to output. Other lines stay
untouched. D0...3 are programmed LOW. D4...D7 are programmed HIGH.

Content of a optional configuration EEPROM

Byte address Name Remarks Value
00 hex SIG 53H = Signature EEPROM valid 53 hex
01 hex MODE 23H = RS232 or 12H = EPP/MEM/PRINTER 23 hex or 12 hex
02 hex CFG Configuration, see next table FE hex
03 hex Reserved 00 hex
05…04 hex VID Vendor ID 4348 hex
07…06 hex PID Product ID 55xx hex
09…08 hex RID Release ID 0100 hex
17…10 hex SN Serial Number, eight characters 12345678
7F…20 hex PIDS Product name string 00 hex, 00 hex
others 00 hex or FF hex

Bit no. Name Remarks Value
7 PRT 0 = USB PRINTER; otherwise 1 1
6 PWR Power: 0 = external; 1 = USB 1
5 SN-S Serial number 0=valid; 1=invalid 1
4 PID-S Product string 0=valid; 1=invalid 1
3 SPD Printer data speed 0=high; 1=low 1
2 SUSP Suspend mode 0=prohibited; 1=permitted 1
1 PROT1 1
0 PROT0 0

API

In CH341A mode EPP / MEM / I²C / Digital I/O the chip can be accessed with API function calls.
Therefore CH341DLL.DLL needs to be imported. Examples for Delphi, C, Visual Basic and ProfiLab
Expert are available.

All API functions need to have the device number (iIndex) as first parameter.
The first chip on USB is device number 0 (iIndex=0), the 2nd chip on USB is device 1, and so on.

General functions

Function CH341OpenDevice:
Function connects to CH341A and needs to be called before other calls.

Function CH341CloseDevice:
Function terminates connection with CH341A.

Function CH341ResetDevice:
Function resets chip to power-on-state.

Function CH341SetExclusive:

iExclusive:
0=shared ;
1=exclusive;

For Information on other API functions please refer to the examples

CH341A evaluation board

DIP28 module included

The board demonstrates the various functions of the CH341A and offers comfortable connections.

Board components

DIP28 module (included)
The CH341A chip is mounted on a breakout board with DIP28 layout. It is plugged into the evaluation
board. The module is ready made with everything necessary for a basic operation: A 12MHz oscillator and
some resistors and capacitors that allow connecting the module directly to the USB lines. The module can
be purchased separately as well.

USB connector
The USB connections is made with an A-plug/A-plug USB cable (included).

Serial port
Connector P6 offers serial lines with TTL level. RXD and TXD signals are routed over a level converter
(MAX232; U6) to a 9 pole Sub-D connector (P7). For RS232-UART operation pins TEN# and RDY# of
connector P6 must be connected with a jumper. For other operation modes this jumper must be removed.

Printer port
P2 offer standard signals of a parallel printer port. The pin out is compatible with a 25 pole Sub-D printer
connector. (Cables often to be found in outdated PC equipment)

Digital I/O
P1 is a 2x10 pin connector with eight digital TTL outputs (LD0..LD7) and eight digital TTL inputs
(BD0..BD7), as well as GND and VCC (USB supplied voltage; Caution!). The digital inputs and outputs are
realized with two TTL latches (74LS274 / 74HC245). Outputs are connected to a row of indicator LED´s.
Inputs can be shortened to ground by closing the contacts of an octal DIP switch (ON=input LOW).
Feeding external signals to the inputs make sure that DIP switch contacts are open (OFF position!)

I²C
P3 is the I²C connector with signals SCL and SDA, as well as GND and VCC (USB supplied voltage. It
allows connecting I²C peripheral IC´s. U5 is prepared for an I²C EEPROM (24Cxx).

As long as no configuration EEPROM is used, the CH341A operation mode is determined with jumpers:

Jumper SDA<->SCL present between P3 (3) – P3 (4): Operation mode PRINT
Jumper removed P3 open: Operation mode UART
Jumper SDA<->GND present between P3 (3) – P3 (2): Operation mode EPP/MEM/I²C/IO

As I²C becomes occupied by jumper configuration, the operation mode EPP/MEM//I²C/IO can be
configured as well connecting contacts 1 und 2 at port J1 with a jumper instead. This will connect pin1
(ACT#) und pin26 (RST#) of the CH341A with a 2K resistor.

Interface PCB
DIP28 module included

The PCB was designed to simplify your constructions based on the CH341A:

• Easy to assemble PCB
• Industrial manufactured with component print
• No SMD components
• Individual assembly options

• Fits into external 3,5”-HDD enclosure (FANTEC DB-337U2-B)
• Dimensions ca. 110 x 45 mm

Minimum assembly for USB->RS232 (TTL)
All you need to do is to solder in the DIP module, the USB jack and a wire between /WR (Pin 25) and BY
(Pin 27). Connect RX and TX (TTL level!) to you application.

Minimum assembly for USB->I²C
A 2K2 resistor and the MODE jumper (or wire) must be added must be added.
The connection Pin25 – Pin27 must be removed in this case.

Assembly options

- It is recommended using a low-cost IC socket for the DIP module.
- Pin connector with Jumper for mode selection RS232/I²C
- Pull-up resistors (2x2K2) for I²C bus lines SDA and SCL, if not provided by elsewhere.
- 4 pin I²C connector (5V-USB, USB-Masse, SDA, SCL), if not wired directly.
- 10 pole I²C connector, following rules on http://www.roboternetz.de/wissen/index.php/RN-

Definitionen#I2C-Bus_Stecker .
- All CH341A pin routed to pin connectors, if not wired directly.
- Potentiometer (VCONSTRAST = 0...5V USB) useful as LCD contrast voltage, trigger level, etc.

Make sure value is 25K minimum!
- Voltage regulator for external power supply (for user circuit). The external supply voltage is

separated from the USB ground.
- LED-R / LED-G are provided for two indicator LED´s for USB and external voltage. Add 2x 470R

resistors for that option.

Interface PCB
DIP28 module, PCB and Components included

Enclosure (not included)
The PCB fits exactly into an external 3,5” HDD enclosure (FANTEC DB-337U2-B). The enclosure is
available from many PC component distributors for less than 25 Euro. The enclosure is delivered with a
powerful external 12V/2A power supply. The enclosure is big enough for a 100x160 cm PCB together with
our interface PCB. The two half-shells snap together without screws, allowing wall-mounting as well as
desktop applications.

Remove the controller PCB from the enclosure and keep screws for re-use. The enclosure has a built in
switch and two indicator LED´s. Their connectors fit into our interface board. Mount the interface board. DC
jack and USB jack fit as well.

The enclosure has a printed ”Mobile Disk” label. You may want to remove this, but be careful. We had best
results using a razor blade as spatula to scrape off the paint. Finally polish with a pot sponge. With our
sample this worked best and without damage. Chemicals strongly not recommended!

Appendix: API functions (CH341DLL.DLL)

// **************
// USB functions
// **************
type mPCH341_NOTIFY_ROUTINE =ProceDure (iEventStatus:cardinal); stdcall;
const CH341_DEVICE_ARRIVAL = 3 ;
 CH341_DEVICE_REMOVE_PEND = 1 ;
 CH341_DEVICE_REMOVE = 0 ;
Function CH341SetDeviceNotify(iIndex:cardinal; iDeviceID: PCHAR;
iNotifyRoutine:mPCH341_NOTIFY_ROUTINE):boolean;Stdcall; external 'CH341DLL.DLL';

// *********************
// General routines
// *********************

// CH341A is addressed with ‘iIndex':
// iIndex=0 => 1st CH341 @ USB
// iIndex=1 => 2nd CH341 @ USB
// iIndex=2 => 3rd ...

// CH341OpenDevice: Connect to CH341A
Function CH341OpenDevice(iIndex: cardinal): integer; Stdcall; external 'CH341DLL.DLL' ;
// CH341CloseDevice: Terminate connection with CH341A
procedure CH341CloseDevice(iIndex: cardinal); Stdcall; external 'CH341DLL.DLL';
// CH341ResetDevice: CH341A reset to power-on defaults
Function CH341ResetDevice(iIndex: cardinal): boolean; Stdcall; external 'CH341DLL.DLL';
// CH341SetExclusive: //Allow/prevent re-open
// iExclusive: 0=shared ;
// 1=exclusive;
Function CH341SetExclusive(iIndex:cardinal; iExclusive:cardinal):boolean;Stdcall; external
'CH341DLL.DLL';

// **********************
// Information requests
// **********************
Function CH341GetVersion: cardinal; Stdcall; external 'CH341DLL.DLL';
Function CH341DriverCommand(iIndex: cardinal; ioCommand: mPWIN32_COMMAND):cardinal; Stdcall;
external 'CH341DLL.DLL';
Function CH341GetDrvVersion: cardinal; Stdcall; external 'CH341DLL.DLL';
Function CH341GetDeviceDescr(iIndex: cardinal; oBuffer: PVOID; ioLength: PULONG): boolean;
Stdcall; external 'CH341DLL.DLL';
Function CH341GetConfigDescr(iIndex: cardinal; oBuffer: PVOID; ioLength: PULONG): boolean;
Stdcall; external 'CH341DLL.DLL';
Function CH341GetDeviceName(iIndex:cardinal):PVOID;Stdcall; external 'CH341DLL.DLL';
Function CH341GetVerIC(iIndex:cardinal):cardinal;Stdcall; external 'CH341DLL.DLL';

// **********
// Interrupts
// **********
Function CH341SetIntRoutine(iIndex: cardinal; iIntRoutine: mPCH341_INT_ROUTINE): boolean;Stdcall;
external 'CH341DLL.DLL';
Function CH341ReadInter(iIndex: cardinal; iStatus:PULONG): boolean; Stdcall; external
'CH341DLL.DLL';
Function CH341AbortInter(iIndex: cardinal): boolean; Stdcall; external 'CH341DLL.DLL';

// Buffer (USB?) RS-232?
Function CH341SetBufUpload(iIndex:cardinal; iEnableOrClear:cardinal):boolean;Stdcall; external
'CH341DLL.DLL';
Function CH341QueryBufUpload(iIndex:cardinal):integer;Stdcall; external 'CH341DLL.DLL';
Function CH341SetBufDownload(iIndex:cardinal; iEnableOrClear:cardinal):boolean;Stdcall; external
'CH341DLL.DLL';
Function CH341QueryBufDownload(iIndex:cardinal):integer;Stdcall; external 'CH341DLL.DLL';

// (USB?) RS-232?
Function CH341ResetInter(iIndex:cardinal):boolean;Stdcall; external 'CH341DLL.DLL';
Function CH341ResetRead(iIndex:cardinal):boolean;Stdcall; external 'CH341DLL.DLL';
Function CH341ResetWrite(iIndex:cardinal):boolean;Stdcall; external 'CH341DLL.DLL';

// USB ? RS-232?
//Delay; iDelay: Unit 1ms
Function CH341SetDelaymS(iIndex:cardinal; iDelay:cardinal):boolean;Stdcall; external
'CH341DLL.DLL';
//Timeout; iWriteTimeout: Unit 1ms

Function CH341SetTimeout(iIndex:cardinal; iWriteTimeout:cardinal; iReadTimeout:cardinal
):boolean;Stdcall; external 'CH341DLL.DLL';
Function CH341ReadData(iIndex:cardinal; oBuffer:PVOID; ioLength:PULONG):boolean;Stdcall;
external 'CH341DLL.DLL';
Function CH341WriteData(iIndex:cardinal; iBuffer:PVOID; ioLength:PULONG):boolean;Stdcall;
external 'CH341DLL.DLL';
Function CH341FlushBuffer(iIndex:cardinal):boolean;Stdcall; external 'CH341DLL.DLL';
Function CH341WriteRead(iIndex:cardinal; iWriteLength:cardinal; iWriteBuffer:PVOID;
iReadStep:cardinal; iReadTimes:cardinal; oReadLength:PULONG; oReadBuffer:PVOID
):boolean;Stdcall; external 'CH341DLL.DLL' ;

// ************************************
// Parallel data transfer (EPP/MEM)
// ************************************
// iMode: 0 = EPP/EPP V1.7 ; 1 = EPP V1.9, 2 = MEM; 256 = keep current
Function CH341InitParallel(iIndex: cardinal; iMode :cardinal): boolean; Stdcall; external
'CH341DLL.DLL';
// iMode: 0 = EPP/EPP V1.7 ; 1 = EPP V1.9, 2 = MEM
Function CH341SetParaMode(iIndex: cardinal; iMode: cardinal): boolean; Stdcall; external
'CH341DLL.DLL';
// Read & Write (MEM und EPP)
Function CH341ReadData0(iIndex: cardinal; oBuffer: PVOID; ioLength: PULONG): boolean; Stdcall;
external 'CH341DLL.DLL';
Function CH341ReadData1(iIndex: cardinal; oBuffer: PVOID; ioLength: PULONG): boolean; Stdcall;
external 'CH341DLL.DLL';
Function CH341AbortRead(iIndex: cardinal): boolean; Stdcall; external 'CH341DLL.DLL';
Function CH341WriteData0(iIndex:cardinal; iBuffer: PVOID; ioLength: PULONG): boolean; Stdcall;
external 'CH341DLL.DLL';
Function CH341WriteData1(iIndex:cardinal; iBuffer: PVOID; ioLength: PULONG): boolean; Stdcall;
external 'CH341DLL.DLL';
Function CH341AbortWrite(iIndex:cardinal): boolean; Stdcall; external 'CH341DLL.DLL';

// EPP Read/Write
Function CH341EppReadData(iIndex:cardinal; oBuffer:PVOID; ioLength:PULONG):boolean; Stdcall;
external 'CH341DLL.DLL';
Function CH341EppReadAddr(iIndex:cardinal; oBuffer:pvoid; ioLength:PULONG):boolean;Stdcall;
external 'CH341DLL.DLL';
Function CH341EppWriteData(iIndex:cardinal; iBuffer:pvoid; ioLength:PULONG):boolean;Stdcall;
external 'CH341DLL.DLL';
Function CH341EppWriteAddr(iIndex:cardinal; iBuffer:PVOID; ioLength:PULONG):boolean;Stdcall;
external 'CH341DLL.DLL';
Function CH341EppSetAddr(iIndex:cardinal; iAddr:byte):boolean;Stdcall; external 'CH341DLL.DLL';

// MEM Read/Write
Function CH341MemReadAddr0(iIndex:cardinal; oBuffer:pvoid; ioLength:PULONG):boolean;Stdcall;
external 'CH341DLL.DLL';
Function CH341MemReadAddr1(iIndex:cardinal; oBuffer:pvoid; ioLength:PULONG):boolean;Stdcall;
external 'CH341DLL.DLL';
function CH341MemWriteAddr0(iIndex:cardinal; iBuffer:pvoid; ioLength:PULONG):boolean;Stdcall;
external 'CH341DLL.DLL';
Function CH341MemWriteAddr1(iIndex:cardinal; iBuffer:pvoid; ioLength:PULONG):boolean;Stdcall;
external 'CH341DLL.DLL';

// ***
// Serial data transfer (I2C, RS232, SPI)
// ***

// CH341SetStream() konfiguriert I2C und SPI
// Bit 1-0: I2C speed 00= low speed /20KHz
// 01= standard /100KHz
// 10= fast /400KHz
// 11= high speed /750KHz

// Bit 2: SPI - Modus
// 0= Standard SPI (D3=clock out, D5=serial out, D7 serial in
// 1= SPI with two data lines (D3=clock out, D5,D4=serialout, D7,D6 serial
in)

// Bit 7: SPI 0= LSB first
// 1= MSB first

// other bits 0 (reserved)
Function CH341SetStream(iIndex:cardinal; iMode:cardinal):boolean;Stdcall; external
'CH341DLL.DLL';

// *********************************
// SPI - Serial Peripheral Interface
// *********************************
//

// CH341A is MASTER in any case
//
// CH341BitStreamSPI()
// Serial daten transfer with (non-SPI conform) IC´s (e.g. LTC1257)
// Simultaneously READ and WRITE through ioBuffer byte array:

// Bit7: D7 <- Input (read data)
// Bit6: D6 <- Input (read data)
// Bit5: D5 -> Output (write data)
// Bit4: D4 -> Output (write data)
// Bit3: D3 -> Output (SCLK; serial clock generated by CH341A);
// Bit2: D2 -> Output (write data)
// Bit1: D1 -> Output (write data)
// Bit0: D0 -> Output (write data)

// Output pattern is defined by bits D0,D1,D2,D4,D5 of bytes in ioBuffer (before function call).
// Bits D6 and D7 of bytes in ioBuffer contain read data (after function call).
// D3 is the auto-generated clock signal. (positive pulse for each byte in ioBuffer)
// Call Set_D5_D0(iIndex, $3F) before to set D0...D5 direction to output!
// iLength is the number of bytes to be tranfered through ioBuffer.
Function CH341BitStreamSPI(iIndex:cardinal; iLength:cardinal; ioBuffer:PVOID):boolean;Stdcall;
external 'CH341DLL.DLL';

// CH341StreamSPI4()
// Standard SPI (Mode 0) with two uni-directional data lines, clock and chip select.
//
// D7 <- Input (Read data; MISO)
// D5 -> Output (Write data; MOSI)
// D3 -> Output (SCLK; serial clock generated by CH341A);
// D2 -> Output (Chip Select 2)
// D1 -> Output (Chip Select 1)
// D0 -> Output (Chip Select 0)
Function CH341StreamSPI4(iIndex:cardinal; iChipSelect:cardinal; iLength:cardinal; ioBuffer:PVOID
):boolean;Stdcall; external 'CH341DLL.DLL';

// CH341StreamSPI3()
// SPI with only ONE bi-directional(!) data line, clock and chip select
// e.g. Maxim (DS1626); (Write with rising clock; read with falling clock)
Function CH341StreamSPI3(iIndex:cardinal; iChipSelect:cardinal; iLength:cardinal;
ioBuffer:PVOID):boolean;Stdcall; external 'CH341DLL.DLL';

// CH341StreamSPI5()
// SPI with 4 data lines (2 pairs uni-directional);
Function CH341StreamSPI5(iIndex:cardinal; iChipSelect:cardinal; iLength:cardinal; ioBuffer:PVOID;
ioBuffer2:PVOID):boolean;Stdcall; external 'CH341DLL.DLL';

// ***********
// *** I2C ***
// ***********
//
// CH341A is MASTER in any case
//
// CH341StreamI2C(): Universal READ and/or WRITE over I2C
// READ only: iWriteLength = 0;
// WRITE only: iReadLength = 0;
Function CH341StreamI2C(iIndex:cardinal; iWriteLength:cardinal; iWriteBuffer:pvoid;
iReadLength:cardinal; oReadBuffer:pvoid):boolean;stdcall; external 'CH341DLL.DLL';

// READ and WRITE from/to IC with internal register-/memory address
// iDevice: 0..127 = I2C device address
// iAddr: register adress; This is not the I2C device addresse!
Function CH341ReadI2C(iIndex:cardinal; iDevice: byte; iAddr: byte; oByte: pbyte):boolean;
Stdcall; external 'CH341DLL.DLL';
Function CH341WriteI2C(iIndex:cardinal; iDevice :byte; iAddr: byte; iByte: byte):boolean;
Stdcall; external 'CH341DLL.DLL';
// I2C-EEPROM: READ and WRITE
type EEPROM_TYPE
=(ID_24C01,ID_24C02,ID_24C04,ID_24C08,ID_24C16,ID_24C32,ID_24C64,ID_24C128,ID_24C256,ID_24C512,ID
_24C1024,ID_24C2048,ID_24C4096);
Function CH341ReadEEPROM(iIndex:cardinal; iEepromID:EEPROM_TYPE; iAddr:cardinal;
iLength:cardinal; oBuffer:Pbytearray):boolean;stdcall; external 'CH341DLL.DLL';
Function CH341WriteEEPROM(iIndex:cardinal; iEepromID:EEPROM_TYPE; iAddr:cardinal;
iLength:cardinal; iBuffer:pbytearray):boolean;stdcall; external 'CH341DLL.DLL';

// ***************************************
// Direct I/O pins programming
// ***************************************

// iEnable: Enable data direction changes
// Bit set = allow changes
// Bit clear = prevent changes
// iSetDirOut: Data direction setting: Input or Output
// Bit set = Pin programmed as output (Caution!)
// Bit clear = Pin is input
// iSetDataOut: Output status
// Bit set = Output HIGH
// Bit clear = Output LOW

// Pin assignment CH341A:

// Bi-directional pins (input or output):
// Bit 0-7 = D0-D7 pin 15-22
// Bit 8 = ERR# pin 5
// Bit 9 = PEMP pin 6
// Bit 10 = ACK pin 7
// Bit 11 = SLCT pin 8
// Bit 12 = unused -
// Bit 13 = BUSY/WAIT# pin 27
// Bit 14 = AUTOFD#/DATAS# pin 4
// Bit 15 = SLCTIN#/ADDRS# pin 3

// pseudo-bi-directional pins (Combination of input and open-collector output) :
// Bit 23 = SDA pin 23 (for functions GetInput/GetStatus)
// Bit 16 = SDA pin 23 (for funktion SetOutput)

// Uni-directional pins (output only):
// Bit 16 = RESET# pin 26
// Bit 17 = WRITE# pin 25
// Bit 18 = SCL pin pin 24

// Note: Other API functions (e.g. RS232, SPI, ... may change pins!
// Connections between two outputs can cause damage to the chip.

// Set outputs
Function CH341SetOutput(iIndex:cardinal; iEnable:cardinal;
iSetDirOut:cardinal;iSetDataOut:cardinal):boolean;Stdcall; external 'CH341DLL.DLL';
Function CH341Set_D5_D0(iIndex:cardinal; iSetDirOut:cardinal; iSetDataOut:cardinal
):boolean;Stdcall; external 'CH341DLL.DLL';
// read inputs
Function CH341GetInput(iIndex:cardinal; iStatus:PULONG):boolean;Stdcall; external
'CH341DLL.DLL';
Function CH341GetStatus(iIndex:cardinal; iStatus: PULONG): boolean; Stdcall; external
'CH341DLL.DLL';

// ******
// RS-232
// ******

// iParityMode:
// 0 = NONE
// 1 = ODD
// 2 = EVEN
// 3 = MARK
// 4 = SPACE
// iBaudRate:
// 50, 75, 100, 110, 134.5, 150, 300, 600, 900, 1200, 1800, 2400, 3600, 4800,
// 9600, 14400, 19200, 28800, 33600, 38400, 56000, 57600, 76800, 115200, 128000,
// 153600, 230400, 460800, 921600, 1500000, 2000000
Function CH341SetupSerial(iIndex:cardinal; iParityMode:cardinal; iBaudRate:cardinal
):boolean;Stdcall; external 'CH341DLL.DLL';

